Un generador eléctrico es todo dispositivo capaz de mantener una diferencia de potencial eléctrico entre dos de sus puntos, llamados polos, terminales o bornes. Los generadores eléctricos son máquinas destinadas a transformar la energía mecánica en eléctrica. Esta transformación se consigue por la acción de un campo magnético sobre los conductores eléctricos dispuestos sobre una armadura (denominada también estator). Si mecánicamente se produce un movimiento relativo entre los conductores y el campo, se generara una fuerza electromotriz (F.E.M.).
Generador de excitación serie
El devanado inductor se conecta en serie con el inducido, de tal forma que toda la corriente que el generador suministra a la carga fluye por igual por ambos devanados.
Dado que la corriente que atraviesa al devanado inductor es elevada, se construye con pocas espiras de gran sección.
Tiene el inconveniente de no excitarse al trabajar en vacío. Así mismo se muestra muy inestable por aumentar la tensión en bornes al hacerlo la carga, por lo que resulta poco útil para la generación de energía eléctrica.
Para la puesta en marcha es necesario que el circuito exterior esté cerrado.
La excitación de un generador en serie se lleva a cabo cuando los devanados de excitación y del inducido se conectan en serie y, por lo tanto la corriente que atraviesa el inducido en este tipo de generador es la misma que la que atraviesa la excitación. Este último devanado, está constituido por pocas espiras con hilo conductor de gran sección, pues la f.e.m. necesaria para producir el campo principal se consigue con fuertes corrientes y pocas espiras.
Puesto que circuito inductor y el circuito de la carga están ambos conectados a través de los terminales de la dinamo, cualquier corriente engendrada en el inducido tiene que dividiese entre esas dos trayectorias en proporción inversa a sus resistencias y, puesto que la parte de la corriente pasa por el circuito inductor es relativamente elevada, la mayor parte de la corriente pasa por el circuito de la carga, impidiendo así el aumento de la intensidad del campo magnético esencial para producir el voltaje normal entre los terminales.
Características del voltaje del generador shunt.
El voltaje de un generador shunt variara en razón inversa de la carga, por la razón mencionada en el párrafo anterior. El aumento de la carga hace que aumente la caída de voltaje en el circuito de inducción, reduciendo así el voltaje aplicado al inductor, esto reduce la intensidad del campo magnético y por con siguiente , el voltaje del generador . Si se aumenta bruscamente la carga aplicada a un dinamo shunt la caída de voltaje puede ser bastante apreciable; mientras que si se suprime casi por entero la carga, la regulación de voltaje de una dinamo shunt es muy defectuosa debido a que su regulación no es inherente ni mantiene su voltaje constante.
Adaptan bien a trabajos fuertes, pero pueden emplearse para el alumbrado por medio de lámparas incandescentes o para alimentar otros aparatos de potencia constante en los que las variaciones de carga no sean demasiado pronunciadas.
El generador shunt funciona con dificultad en paralelo por que no se reparte por igual la carga entre ellas.
El generador con excitación shunt suministra energía eléctrica a una tensión aproximadamente constante, cualquiera que sea la carga, aunque no tan constante como en el caso del generador con excitación independiente. Cuando el circuito exterior está abierto, la máquina tiene excitación máxima porque toda la corriente producida se destina a la alimentación del circuito de excitación; por lo tanto, la tensión en bornes es máxima. Cuando el circuito exterior está cortocircuitado, casi toda la corriente producida pasa por el circuito del inducido y la excitación es mínima, la tensión disminuye rápidamente y la carga se anula. Por lo tanto, un cortocircuito en la línea no compromete la máquina, que se desexcita automáticamente, dejando de producir corriente. Esto es una ventaja sobre el generador de excitación independiente en donde un cortocircuito en línea puede producir graves averías en la máquina al no existir éste efecto de desexcitación automática.
Respecto a los generadores de excitación independiente, los generadores shunt presentan el inconveniente de que no pueden excitarse si no están en movimiento, ya que la excitación procede de la misma máquina.
El circuito de excitación no lleva fusibles por las razones ya indicadas en el caso del generador de excitación independiente; en este circuito no es necesario un interruptor porque para excitar la máquina simplemente hay que ponerla en marcha y para desexcitarla no hay más que pararla. El amperímetro en el circuito de excitación puede también suprimirse, aunque resulta conveniente su instalación para comprobar si, por alguna avería, el generador absorbe una corriente de excitación distinta de la normal.
Cuando se dispone permanentemente de tensión en las barras especiales generales, muchas veces se prefiere tomar la corriente de excitación de éstas barras y no de las escobillas del generador, es decir, si al poner en marcha el generador hay tensión en las barras generales, la máquina se comporta como generador de excitación independiente; si no hay tensión, como generador shunt.
Para la puesta en marcha, debe cuidarse de que el interruptor general esté abierto y que el reóstato de campo tiene todas las resistencias intercaladas en el circuito. En estas condiciones, se pone en marcha la máquina motriz, aumentando paulatinamente su velocidad hasta que éste alcance su valor nominal, al mismo tiempo, aumenta la corriente de excitación y, por lo tanto, la tensión en los bornes del generador lo que indicará el voltímetro.
Si en la red no existen baterías de acumuladores, se acopla a ella el generador a una tensión algo inferior a la nominal; para conseguir esta tensión, se maniobra el reóstato de campo paulatinamente, quitando resistencias.
No resulta conveniente acoplar el generador a la red antes de excitarlo o a una tensión muy baja, porque si la resistencia exterior fuese muy baja (es decir, que la red estuviese en condiciones próximas al cortocircuito), la corriente de excitación sería muy pequeña e insuficiente para excitar la máquina.
De la misma forma que para el caso del generador con excitación independiente, si en la red hubiese baterías de acumuladores, se cerrará el interruptor general, solamente cuando la tensión en los bornes de la máquina sea igual a la tensión de la red.
Conviene atender a que las baterías de acumuladores no descarguen sobre la máquina, para lo cual es conveniente que el circuito del generador esté provisto de un interruptor de mínima tensión, que debe montarse tal como se indica en la siguiente figura.
Figura 3. Esquema de conexiones de un generador con excitación shunt e interruptor de mínima tensión.
Cuando se necesite detener el generador, se descargará, disminuyendo la excitación por medio del reóstato de campo teniendo cuidado de que las baterías no se descarguen sobre el generador y, por lo tanto, manteniendo siempre la tensión nominal. Si no hay baterías acopladas a la red, puede disminuirse la velocidad de la máquina motriz. En cuanto el amperímetro indique una intensidad de corriente nula o casi nula, se abre el interruptor principal, y se detiene la máquina motriz. Por efecto de la inercia, el gobernador seguirá girando durante algún tiempo y se desexcitará gradualmente; si hubiera necesidad de desexcitarlo rápidamente, se abrirá el circuito de excitación con las debidas precauciones y se frenará el volante de la máquina motriz.
Los generadores shunt se recomiendan cuando no haya cambios frecuentes y considerables de carga o bien cuando haya elementos compensadores, tales como generadores auxiliares, baterías de acumuladores, entre otros.
Si existen acumuladores como reserva o para servicios auxiliares también se recomienda este tipo de generador, ya que la máquina no corre el peligro de que se invierta la polaridad del circuito de excitación; en efecto, cuando el generador carga la batería la corriente tiene el sentido de la flecha de línea continua, y atraviesa la batería desde el polo positivo al polo negativo. Si por una causa accidental (por ejemplo, una pérdida de velocidad en el generador), disminuye la tensión de la máquina y queda inferior a la de la batería, la corriente suministrada por la batería, atraviesa la máquina en sentido opuesto, entrando por el borne positivo y saliendo por el negativo, pero en el circuito de excitación circula en el mismo sentido de la corriente producida cuando la máquina funcionaba como generador; en consecuencia, la máquina funciona ahora como motor, y continúa girando en el mismo sentido que tenía antes, cuando funcionaba como generador. De lo dicho, puede deducirse fácilmente, que el generador shunt puede acoplarse en paralelo sin peligro con otros generadores, aún en el caso de que por causa de una avería accidental en el regulador de la máquina motriz, un generador sea conducido como motor por otro generador.
6 comentarios:
por favor cuando se solicite un informe escribanlo en letra arial bumero 12 y si el blog tiene la plantilla negra la letra debe ser blanca
Muy buena información. La semana pasada lei un artículo en un diario de mi ciudad que decía que la venta grupo electrogeno esta en su punto más alto ya que los comerciantes y los particulares recurren a ese sistema para evitar los sistemáticos cortes de luz.
Que buen post, pienso que es fundamental saber sobre generadores eléctricos, ya que son una fuente de energia que te puede ayudar mucho.
Que buen post, pienso que es fundamental tener un
generador eléctrico, ya que son una fuente de energía que te puede ayudar mucho.
Buen post. Pesima elecciòn de tipo ,color y tamaño e letra. Por que empeñarse en hacer algo ilegible.....
muy feo color
Publicar un comentario